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Abstract

Different notions of the consistency of obligations collapse in standard deontic logic.
In justification logics, which feature explicit reasons for obligations, the situation is
different. Their strength depends on a constant specification and on the available
set of operations for combining different reasons. We present different consistency
principles in justification logic and compare their logical strength. We propose a novel
semantics for which justification logics with the explicit version of axiom D, jd, are
complete for arbitrary constant specifications. Consistency is sometimes formulated
in terms of permission. We therefore study permission in the context of justification
logic, introducing a notion of free-choice permission for the first time. We then discuss
the philosophical implications with regard to some deontic paradoxes.

Keywords: Justification logic, consistency of obligations, free-choice permission,
completeness.

1 Introduction

Deontic logic is the logic of obligations, permissions, and sometimes other
(primitive or derived) normative notions. What has emerged as the bench-
mark version, a system called Standard Deontic Logic (SDL), is nothing more
than KD, the smallest normal modal logic with the D axiom schema added.
For an introduction and historical overview, see [20].

The D axiom is in place to ensure the consistency of obligations, but can
take different formulations, for instance ¬O�, orOA→ ¬O¬A, or ¬(OA∧O¬A).
In a normal modal logic, all these formulations are provably equivalent, and
therefore it does not matter much which one is chosen. In a non-normal
(but still classical) setting, for instance when an aggregation principle (such
as OA ∧ OB → O(A ∧ B)) is missing, different versions of D are not inter-
derivable, and it therefore matters which one is chosen, both for philosophical
and for technical reasons (for deontic logic in a paraconsistent setting, see e.g.
[10]). One might want to distinguish, conceptually, between an obligation for
an impossible or logically contradictory state of affairs (O�) on one hand, and
multiple obligations for jointly inconsistent states of affairs (OA ∧ O¬A) on
the other, because the former might thought to be self-defeating or concep-
tually impossible, whereas the latter can derive from different background or
contingent normative systems (e.g. ethics and the law) and are only practi-
cally unenforceable, but logically possible. Moreover, SDL and its variants in
the standard modal language lack the power to distinguish the source of one
situation (an obligation for the impossible) from the source of the other (incon-
sistent obligations), or to exclude one situation for logical reasons and admit
the other for contingent reasons.

Justification logic [3,31] is an explicit version of modal logic originally de-
veloped to provide a logic of proofs [2,30]. Instead of formulas such as ◻A,
the language of justification logic includes formulas such as t ∶ A saying, for
instance, that t justifies knowledge of A or A is obligatory because of reason
t, where t is a term representing the reason. Systems of justification logic
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are parameterized by a so-called constant specification that states which log-
ical axioms do have a justification. Hence the constant specification can be
used to calibrate the strength of a justification logic. Of particular interest
are axiomatically appropriate constant specifications where every axiom has a
justification. In that case the justification logic enjoys a constructive analogue
of the modal necessitation rule. (See Sect. 3 for a formal definition of constant
specification).

The explicit counterpart in justification logic of one version of axiom D
(in standard modal logic) was first formulated by Brezhnev [6] as axiom jd,
i.e. ¬(t ∶ �). This axiom turned out to be rather notorious. Usually one
can establish completeness of a justification logic for an arbitrary constant
specification. However, in the presence of jd this is not the case. Systems that
include jd usually need an axiomatically appropriate constant specification
in order to be complete. Kuznets [24] defined M-models for justification logics
with jd and Pacuit [40] presented F-models for jd. Modular models for jd have
been studied in [28] and subset models for jd are introduced in [32]. For all
these different semantics, an axiomatically appropriate constant specification
is required in order to obtain a completeness result. Notable exceptions to this
phenomenon are M-models (defined in [24]) and Fk-models (defined in [25]) for
which completeness holds for arbitrary constant specifications.

The requirement of an axiomatically appropriate constant specification is
often overlooked. In particular, this requirement is omitted in the completeness
theorems given in [14] and [32] (although for the latter paper it seems that it
has been corrected later [33]). In the case of [14] the appropriateness require-
ment is important since the solution to avoid some of the known paradoxes,
such as Ross’, is to restrict the constant specification. But then the resulting
justification logic is not complete anymore.

In this paper we study in detail the jd axiom and related principles of con-
sistency. The paper is split in two parts: the first focuses on consistency of
obligations, the second on permission, and especially free choice permission. In
the first part, we compare their logical strength and we investigate the role of
the constant specification. After an informal discussion, we present the basic
syntax and semantics of system JD (with axiom jd). We propose a novel seman-
tics for which justification logics with jd are complete for arbitrary constant
specifications. We consider system JNoC, which has a different version of the
consistency axiom, noc. We establish that various formulations of consistency
are equivalent only with an axiomatically appropriate constant specification.
We put forward some philosophical remarks on the role of justification logic
when it comes to the study of impossible and inconsistent obligations. In the
second part, we introduce and study a modality of free choice permission, and
show how it preserves consistency, respects desiderata and avoids well-known
paradoxes. We discuss the issues of the dual of free-choice permission and weak
obligation. We conclude with a brief discussion and a plan for future work.
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2 Impossible vs Inconsistent Obligations: An Overview

Standard (implicit) systems of deontic logic conflate impossible and conflict-
ing obligations. One thing is to say that nothing logically impossible can be
obligatory, i.e. ¬O�, another to say that there are not (or there should not be)
conflicting provisions that are obligatory, i.e. ¬(OA∧O¬A). Standard systems
can derive O� from OA ∧O¬A and vice versa, thus suffering a collapse. One
way to see the difference is that the former might be argued to be unacceptable
for conceptual or logical reasons (e.g. that such an obligation would be concep-
tually self-defeating), whereas the latter might be argued to be unacceptable
for contingent reasons (e.g. that such obligations cannot be fulfilled in reality,
although can potentially still arise in real-life situations). [8,9] use minimal
models, [41] uses multiple accessibility relations in the disjunctive truth con-
dition of the ought operator: in such ways the authors avoid aggregation and
therefore the collapse of impossible to inconsistent obligations (multi-relational
semantics has also been used more recently, cf. e.g. [7]).

In justification logic we have the explicit counterparts jd: ¬(t ∶ �) and noc:
¬(t ∶ A ∧ t ∶ ¬A), respectively, of the above implicit principles, giving rise to
systems we call JD and JNoC (respectively). Corollary 8.3 establishes that the
former implies the latter. Lemma 8.6 shows that the converse direction holds
in the presence of an axiomatically appropriate constant specification. In this
situation we have the same collapse as in the standard implicit systems. There
are two options to avoid this consequence:

● In justification logic we can use the constant specification to adjust the
power of the logical systems and thus avoid the collapse. Lemma 8.7 shows
that ¬(t ∶ A∧ t ∶ ¬A) does not imply ¬(t ∶ �) if the constant specification is
not axiomatically appropriate. Theorems 5.3 and 7.3 prove that JD and
JNoC with an arbitrary constant specification are complete with regard to
a novel semantics we develop.

● As explained in Remark 8.8, we can avoid the collapse even in the presence
of an axiomatically appropriate CS. It suffices to consider a language
without the + operation. We denote this system JNoC−.

Avoiding this collapse is important in situations with conflicting obligations.
Let us look at Sartre’s Dilemma [36] as presented in [39]:

(1) It is obligatory that I now meet Jones (say, as promised to Jones, my
friend).

(2) It is obligatory that I now do not meet Jones (say, as promised to Smith,
another friend).

In implicit standard deontic logic featuring the principle ¬(OA∧O¬A), we
immediately get a contradiction if we represent (1) and (2) as OA and O¬A,
respectively. However, in a system such as JNoC−, there is no conflict as there
are two different reasons in (1) and (2). Hence (1) and (2) are represented
by s ∶ A and t ∶ ¬A for two different terms s and t, which is consistent with
axiom noc.
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Moreover, in normal deontic logic, one can pass from two inconsistent obli-
gations to one impossible obligation. This is dubious on philosophical grounds:
we have pointed out that one may argue that one impossible obligation is con-
ceptually self-defeating, whereas two inconsistent obligations may be in place
for contingent reasons (e.g. different promises).

Justification logic gives us the means to not conflate the two, without loos-
ing much reasoning power. Even more, one can do justice to the background
philosophical intuitions to exclude impossible obligations for logical reasons, for
instance by focusing on the system JNoC and calibrating the constant specifica-
tion. Keeping track of the source of obligations, for instance through reasons,
opens up the possibility to solve conflicts if one has a priority ordering on
reasons (see for instance [21], and [13] for an implementation in justification
logic). 5

In the rest of the paper we present the formal results starting from the basic
syntax and semantics of system JD (with axiom jd).

3 Syntax

Justification terms are built from countably many constants ci and variables xi
according to the following grammar:

t ∶∶= ci ∣ xi ∣ t ⋅ t ∣ (t + t) ∣ !t.

The set of all terms is denoted by Tm.
Formulas are built from countably many atomic propositions Pi and the

symbol ⊥ according to the following grammar:

F ∶∶= Pi ∣ ⊥ ∣ F → F ∣ t ∶ F.

The set of all atomic propositions is denoted by Prop and the set of all formulas
is denoted by LJ . The other classical Boolean connectives ¬,⊺,∧,∨,↔ are
defined as usual, in particular we have ¬A ∶= A → � and ⊺ ∶= ¬�. Informally,
+ mimics the aggregation of reasons, ⋅ embodies modus ponens reasoning, and
! is positive introspection. We keep ! for ease of exposition, but it can be
dispensed with. For a discussion on the interpretation of the operations in a
deontic context, see [14].

5 Normative reasoning with priority has, of course, a long history. [37], for instance, presents
a framework to capture prioritized normative reasoning with conflicts and exceptions in
an argumentation framework. While very important, we do not think we can consider it
adequately in the context of the present paper, which is mostly concerned with explicit
reasons and permission expressed in the framework of justification logic.
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The axioms of JD are the following: 6

cl all axioms of classical propositional logic;
j+ s ∶ A ∨ t ∶ A→ (s + t) ∶ A;
j s ∶ (A→ B)→ (t ∶ A→ s ⋅ t ∶ B);
jd ¬(t ∶⊥).

Note that since ¬ is a defined notion, jd actually stands for t ∶⊥→⊥.
Justification logics are parameterized by a so-called constant specification,

which is a set

CS ⊆ {(c,A) ∣ c is a constant and A is an axiom of JD}.

Our logic JDCS is now given by the axioms of JD and the rules modus ponens:

A A→ B (MP)
B

and axiom necessitation

(AN!) ∀n ∈ N, where (c,A) ∈ CS
!...!
°
n

c ∶ !...!
°
n−1

c ∶ ... ∶ !!c ∶ !c ∶ c ∶ A

Definition 3.1 [Axiomatically appropriate CS] A constant specification CS is
called axiomatically appropriate if for each axiom A, there is a constant c with
(c,A) ∈ CS.

Axiomatically appropriate constant specifications are important as they
provide a form of necessitation. A proof of the following lemma can be found
in [2,3,31].

Lemma 3.2 Let CS be an axiomatically appropriate constant specification. For
each formula A with

JDCS ⊢ A,

there exists a term t such that

JDCS ⊢ t ∶ A.

It is not difficult to show that the Deduction Theorem holds for JDCS (and
also holds for all logics introduced in the next sections).

6 The formulation of axioms j+ and j as implications (instead of equivalences) has historical
reasons in the semantics for the Logic of Proofs. The formulation as implication corresponds
to a closure condition on the models whereas an equivalence would additionally require a
leastness condition. That would be much stronger and is usually not needed. Equivalence
formulations are studied in the context of dynamic epistemic justification logics, see, e.g., [29],
and in the context intutionistic justificiation logic [38].
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4 Semantics

We recall the basic definitions and results about subset models for justification
logic [32,34,35].

Definition 4.1 [General subset model] Given some constant specification CS,
then a general CS-subset model M = (W,W0, V,E) is defined by:

● W is a non-empty set of objects called worlds.

● W0 ⊆W and W0 ≠ ∅ .

● V ∶W ×LJ → {0,1} such that for all ω ∈W0, t ∈ Tm, F,G ∈ LJ :
⋅ V (ω,⊥) = 0;
⋅ V (ω,F → G) = 1 iff V (ω,F ) = 0 or V (ω,G) = 1;
⋅ V (ω, t ∶ F ) = 1 iff E(ω, t) ⊆ { υ ∈W ∣ V (υ,F ) = 1 }.

● E ∶W ×Tm→ P(W ) that meets the following conditions where we use

[A] ∶= {ω ∈W ∣ V (ω,A) = 1}. (1)

For all ω ∈W0, and for all s, t ∈ Tm:
⋅ E(ω, s + t) ⊆ E(ω, s) ∩E(ω, t);
⋅ E(ω, s ⋅ t) ⊆ {υ ∈W ∣ ∀F ∈ APPω(s, t)(υ ∈ [F ])} where APP contains

all formulas that can be justified by an application of s to t, see below;
⋅ ∃υ ∈W0 with υ ∈ E(ω, t);
⋅ for all n ∈ N and for all (c,A) ∈ CS ∶ E(ω, c) ⊆ [A] and

E(ω, !...!
°
n

c) ⊆ [ !...!
°
n−1

c ∶ ....!c ∶ c ∶ A].

The set APP is formally defined as follows:

APPω(s, t) ∶= {F ∈ LJ ∣ ∃H ∈ LJ s.t.

E(ω, s) ⊆ [H → F ] and E(ω, t) ⊆ [H]}.

W0 is the set of normal worlds. The set W ∖W0 consists of the non-normal
worlds. Note that there are no conditions on functions V and E for non-
normal worlds. Moreover, using the notation introduced by (1), we can read
the condition on V for justification formulas t ∶ F as:

V (ω, t ∶ F ) = 1 iff E(ω, t) ⊆ [F ].

In subset semantics terms are not treated only syntactically (as in most
other semantics for justification logics), but they get assigned a set of worlds.

E(ω, t) tells us the states that are ideal according to t from ω’s perspective.
Then t ∶ F is true at ω just in case F is true at those ideal states. We have seen
that a formula of the form t ∶ F is true at a world ω just in case the interpretation
of t at ω (a set of worlds) is a subset of the truth set of F (the set of worlds where
F is true). However, take two axioms A and B. They are true in all possible (or
normal) worlds. Therefore, every term that is a reason for the former will also
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be a reason for the latter (if terms get assigned sets of possible worlds). But in
this way, there is no control on the constant specification. Using impossible (or
non-normal) worlds, however, lets us solve this problem, because at impossible
worlds classical logically equivalent propositions can differ in truth value, and
a justification for one may not be a justification for the other. This makes the
semantics able to capture hyperintensionality.

Since the valuation function V is defined on worlds and formulas, the defi-
nition of truth is standard.

Definition 4.2 [Truth] Given a subset model

M = (W,W0, V,E)

and a world ω ∈W and a formula F we define the relation ⊩ as follows:

M, ω ⊩ F iff V (ω,F ) = 1.

Validity is defined with respect to the normal worlds.

Definition 4.3 [Validity] Let CS be a constant specification. We say that a
formula F is general CS-valid if for each general CS-subset model

M = (W,W0, V,E)

and each ω ∈W0, we have M, ω ⊩ F .

As expected, we have soundness [32].

Theorem 4.4 (Soundness) Let CS be an arbitrary constant specification.
For each formula F we have that if JDCS ⊢ F , then F is general CS-valid.

However, completeness only holds if the constant specification is axiomati-
cally appropriate [33].

Theorem 4.5 (Completeness) Let CS be an axiomatically appropriate con-
stant specification. For each formula F we have that if F is general CS-valid,
then JDCS ⊢ F .

One might need more control on the constant specification, e.g. by relin-
quishing the requirement that each axiom be justified. For instance, [14] argued
that restricting the constant specification is one way to avoid certain deontic
paradoxes, such as Ross’. In the next section, we prove soundness and com-
pleteness with regard to an arbitrary constant specification.

5 D-arbitrary subset models

We present a novel class of subset models for JD and establish soundness and
completeness.

Definition 5.1 [D-arbitrary subset model] A D-arbitrary CS-subset model
M = (W,W0, V,E) is defined like a general CS-subset model with the condition

∃υ ∈W0 with υ ∈ E(ω, t)
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being replaced with

∃υ ∈W/� with υ ∈ E(ω, t)

where W/� ∶= {ω ∈W ∣ V (ω,�) = 0}.

The notion of D-arbitrary CS-validity is now as expected.

Definition 5.2 [D-arbitrary validity] Let CS be a constant specification. We
say that a formula F is D-arbitrary CS-valid if for each D-arbitrary CS-subset
model M = (W,W0, V,E) and each ω ∈W0, we have M, ω ⊩ F .

We have soundness and completeness with respect to arbitrary constant
specifications.

Theorem 5.3 (Soundness and Completeness) Let CS be an arbitrary
constant specification. For each formula F we have

JDCS ⊢ F iff F is D-arbitrary CS-valid.

The completeness proof is by a canonical model construction as in the case of
general subset models [32]. We will only sketch main steps here. The canonical
model is given as follows.

Definition 5.4 [Canonical Model] Let CS be an arbitrary constant specifica-
tion. We define the canonical model MC

= (WC ,WC
0 , V

C ,EC
) by:

● WC
= P(LJ).

● WC
0 = { Γ ∈WC

∣ Γ is maximal JDCS-consistent set of formulas }.

● V C
(Γ, F ) = 1 iff F ∈ Γ;

● EC
(Γ, t) = { ∆ ∈WC

∣ ∆ ⊇ Γ/t } where

Γ/t ∶= {F ∈ LJ ∣ t ∶ F ∈ Γ}.

The essential part of the completeness proof is to show that the canonical
model is a D-arbitrary CS-subset model.

Lemma 5.5 Let CS be an arbitrary constant specification. The canonical
model MC is a D-arbitrary CS-subset model.

Proof. Let us only show the condition

∃υ ∈WC
/� with υ ∈ E(ω, t) (2)

for all ω ∈W0 and all terms t.
So let t be an arbitrary term and Γ ∈ WC

0 . Since Γ is a maximal JDCS-
consistent set of formulas, we find ¬(t ∶ �) ∈ Γ and thus t ∶ � ∉ Γ. Let ∆ ∶= Γ/t.
We find that � ∉ ∆ and by definition V C

(∆,�) = 0. Thus ∆ ∈WC
/� . Moreover,

again by definition, ∆ ∈ EC
(Γ, t). Thus (2) is established. ◻

Now the Truth lemma and the completeness theorem follow easily as in [32].
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6 Reducing Application to Sum

In subset models, it is possible to reduce application to sum by introducing
a new term constant c⋆, see [32]. We let JD be the background logic in this
section. We define c⋆-term inductively as follows:

● c⋆ is a c⋆-term;

● if s and t are terms and c is a c⋆-term then s + c and c + t are c⋆-terms.

So a c⋆-term is either c⋆ itself or a sum-term where c⋆ occurs at least once.
Instead of axiom j, we consider the axiom jc⋆ given by

c ∶ A ∧ c ∶ (A→ B)→ c ∶ B, for all c⋆-terms c,

and define s ⋅ t as s + t + c⋆. Lemma 8 in [33] shows how then axiom j follows.
On the semantic side, D-arbitrary subset models are required to satisfy

E(ω, c⋆) ⊆WMP (for ω in W0) where

WMP ∶= {ω ∈W ∣ ∀A,B ∈ LJ ((V (ω,A) = 1 and V (ω,A→ B) = 1)

implies V (ω,B) = 1)}.

Our completeness results also hold in the setting with c⋆. However, the proof
that the canonical model is well-defined is substantially more complicated.

In the definition of the canonical model we use

EC
(Γ, t) = { ∆ ∈WC

MP ∣ ∆ ⊇ Γ/t } if t is a c⋆-term

EC
(Γ, t) = { ∆ ∈WC

∣ ∆ ⊇ Γ/t } otherwise,

with

WC
MP ∶= { Γ ∈WC

∣ ∀A,B ∈ LJ ∶ if A→ B ∈ Γ and A ∈ Γ then B ∈ Γ } .

To show that the canonical model indeed is a model we have to show the
condition

∃υ ∈WC
/� with υ ∈ E(ω, t) (3)

for all ω ∈W0 and all terms t. For terms that are not c⋆-terms this is done as
in the proof of Lemma 5.5.

It remains to show the case when t is a c⋆-term. Define ∆ ∶= Γ/t. As in
Lemma 5.5 we find ∆ ∈ WC

/� . To show that ∆ ∈ E(ω, t), it is enough to show

∆ ∈WC
MP . Assume A→ B ∈ ∆ and A ∈ ∆. By the definition of ∆, we obtain

t ∶ (A→ B) ∈ Γ and t ∶ A ∈ Γ.

Using axiom jc⋆ and the fact that Γ is maximal consistent, we get t ∶ B ∈ Γ and
thus B ∈ ∆. Therefore ∆ ∈WC

MP , which establishes (3) for t being a c⋆-term.
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7 No conflicts

So far, we have considered the explicit version of ¬O�. In normal modal logic,
this is provably equivalent to ¬(OA ∧ O¬A). 7 In this section we study the
explicit version of this principle, which we call NoC (No Conflicts), saying that
reasons are self-consistent. That is A and ¬A cannot be obligatory for one
and the same reason. The axioms of JNoC are the axioms of JD where jd is
replaced with:

noc ¬(t ∶ A ∧ t ∶ ¬A).

Accordingly, a constant specification for JNoC is defined like a constant
specification for JD except that the constants justify axioms of JNoC.

Given a constant specification CS for JNoC, the logic JNoCCS is defined by
the axioms of JNoC and the rules modus ponens and axiom necessitation.

Definition 7.1 [NoC subset model] A NoC CS-subset model

M = (W,W0, V,E)

is defined like a general CS-subset model with the condition

∃υ ∈W0 with υ ∈ E(ω, t)

being replaced with

∃υ ∈Wnc with υ ∈ E(ω, t)

where Wnc ∶= {ω ∈W ∣ for all formulas A (V (ω,A) = 0 or V (ω,¬A) = 0)}.

The notion of NoC CS-validity is now as expected.

Definition 7.2 [NoC validity] Let CS be a constant specification. We say
that a formula F is NoC CS-valid if for each NoC CS-subset model M =

(W,W0, V,E) and each ω ∈W0, we have M, ω ⊩ F .

Theorem 7.3 (Soundness and Completeness) Let CS be an arbitrary
constant specification. For each formula F we have

JNoCCS ⊢ F iff F is NoC CS-valid.

Again the completeness proof uses the canonical model construction from
Definition 5.4 except that we set

● WC
0 = { Γ ∈WC

∣ Γ is maximal JNoCCS-consistent set of formulas }.

Now we have to show that the defined structure is an NoC CS-subset model.

Lemma 7.4 Let CS be an arbitrary constant specification. The canonical
model MC is an NoC CS-subset model.

7 Via and aggregation and distribution axiom, such as: OA ∧OB ↔ O(A ∧B).
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Proof. As before, we only show the condition

∃υ ∈WC
nc with υ ∈ E(ω, t) (4)

for all ω ∈W0 and all terms t.
So let t be an arbitrary term and Γ ∈WC

0 . Let A be an arbitrary formula.
Since Γ is a is maximal JNoCCS-consistent set of formulas, we find

¬(t ∶ A ∧ t ∶ ¬A) ∈ Γ

and thus t ∶ A ∧ t ∶ ¬A ∉ Γ. Thus, again by maximal consistency,

t ∶ A ∉ Γ or t ∶ ¬A ∉ Γ.

Let ∆ ∶= Γ/t. We find that

A ∉ ∆ or ¬A ∉ ∆

and hence, by definition,

V C
(∆,A) = 0 or V C

(∆,¬A) = 0.

Thus ∆ ∈ WC
nc . Moreover, again by definition, ∆ ∈ EC

(Γ, t). Thus (4) is
established. ◻

Again the Truth lemma and the completeness theorem follow easily.

8 Formal comparison

In the following we will study the exact relationship of JD and JNoC. The
reasoning strength of a justification logic can be callibrated via the constant
specification. Hence the relationship between various principles and formulas
usually depends on the constant specification. We start with a simple example
before we consider the case of JD and JNoC.

Example 8.1 Let A and B be two formulas such that A → B is a logical
validity, i.e. A → B is provable. If we work with a very weak (or even emtpy)
constant specification, it may happen that there exists a justification term s
such that s ∶ A is true but t ∶ B does not hold for any justification term t. Thus
s ∶ A→ t ∶ B will be false for each term t although A→ B is a valid formula.

If we work with an axiomatically appropriate constant specification, such a
situation is no longer possible. Since A→ B is provable, we find by Lemma 3.2
a term r such that r ∶ (A→ B). Thus by axiom j, we obtain s ∶ A→ r ⋅ s ∶ B.

Considering the case of our consistency principles, we will see, for instance,
that ¬(s ∶ A ∧ t ∶ ¬A) can be true for all terms s and t while at the same time
r ∶ � holds for some term r. The reason is that even though �→ A and �→ ¬A
are logical validities, it is not possible to derive s ∶ A or t ∶ ¬A for any terms s
and t from a given r ∶ � if the constant specification is weak.

However, Lemma 3.2 is a key property for many applications of justifica-
tion logic. Thus one often would like to work with an axiomatically appropriate
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constant specification. We will see that dropping the + operation makes it pos-
sible to have an axiomatically appropriate constant specification, self-consistent
reasons, and reasons for contradicting obligations in one model.

The following lemmas establish the exact relationship between JD and
JNoC. First we show that JDCS proves that reasons are consistent among
them, i.e. that ¬(s ∶ A ∧ t ∶ ¬A) holds for arbitrary terms s and t, which is the
consistency principle used in [14].

Lemma 8.2 Let CS be an arbitrary constant specification. Then JDCS proves
¬(s ∶ A ∧ t ∶ ¬A) for all terms s, t and all formulas A.

Proof. Suppose towards a contradiction that s ∶ A∧ t ∶ ¬A. Thus we have s ∶ A
and t ∶ ¬A where the latter is an abbreviation for t ∶ (A→ �) (by the definition
of the symbol ¬). Thus using axiom j, we get t ⋅ s ∶ � and by axiom jd we
conclude �. Hence from the assumption s ∶ A∧ t ∶ ¬A we prove �. Therefore, by
the Deduction Theorem, we get (s ∶ A ∧ t ∶ ¬A) → �. Finally, by the definition
of ¬ we obtain ¬(s ∶ A ∧ t ∶ ¬A). ◻

Corollary 8.3 For any constant specification CS, JDCS proves every instance
of noc.

Remark 8.4 It is only by coincidence that Lemma 8.2, and thus also Corol-
lary 8.3, hold for arbitrary constant specifications. If we base our proposi-
tional language on different connectives (say ∧ and ¬ instead of → and �), then
Lemma 8.2 and Corollary 8.3 only hold for axiomatically appropriate constant
specifications.

The proof of Lemma 8.2 is as follows. Since CS is axiomatically appropriate,
there exists a term r such that

r ∶ (¬A→ (A→ �)) (5)

is provable where � is defined as P ∧ ¬P (for some fixed P ) and F → G is
defined as ¬(F ∧ ¬G). From (5) and axiom j we get

t ∶ ¬A→ r ⋅ t ∶ (A→ �).

Thus from s ∶ A ∧ t ∶ ¬A, we obtain (r ⋅ t) ⋅ s ∶ �, which contradicts axiom jd as
before.

Next we show that also JNoCCS proves that reasons are consistent among
them.

Lemma 8.5 Let CS be an arbitrary constant specification. Then JNoCCS

proves ¬(s ∶ A ∧ t ∶ ¬A) for all terms s, t and all formulas A.

Proof. Suppose towards a contradiction that s ∶ A ∧ t ∶ ¬A holds. Using
axiom j+ we immediately obtain s + t ∶ A ∧ s + t ∶ ¬A. By axiom noc we
conclude �, which by the Deduction Theorem establishes ¬(s ∶ A ∧ t ∶ ¬A). ◻

Next we show that JNoCCS with an axiomatically appropriate constant spec-
ification proves ¬(t ∶ �).
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Lemma 8.6 Let CS be an axiomatically appropriate constant specification.
Then JNoCCS proves ¬(t ∶ �) for each term t.

Proof. Because CS is axiomatically appropriate, there are terms r and s such
that

r ∶ (�→ P ) and s ∶ (�→ ¬P ).

Therefore, we get

t ∶ �→ r ⋅ t ∶ P and t ∶ �→ s ⋅ t ∶ ¬P.

Thus we have t ∶ � → (r ⋅ t ∶ P ∧ s ⋅ t ∶ ¬P ). Together with the previous lemma,
this yields t ∶ �→ �, which is ¬(t ∶ �). ◻

Here the requirement of an axiomatically appropriate constant specification
is necessary.

Lemma 8.7 There exists a NoC CS-subset model M = (W,W0, V,E) with
some ω ∈W0 such that

M, ω ⊩ t ∶ �

for some term t.

Proof. Consider the empty CS and the following model:

(i) W = {ω, ν} and W0 = {ω}

(ii) V (ν,�) = 1 and V (ν,F ) = 0 for all other formulas F

(iii) E(ω, t) = {ν} for all terms t.

We observe that ν ∈ Wnc. So the model is well-defined. Further, we find
E(ω, t) ⊆ [�]. Since ω ∈W0, we get V (ω, t ∶ �) = 1. We conclude

M, ω ⊩ t ∶ �.

◻

Remark 8.8 For Lemmas 8.5 and 8.6, the presence of the + operation is es-
sential. Consider a term language without + and the logic JNoC− being JNoC
without j+. Let CS be an axiomatically appropriate CS for JNoC−. There is a
NoC CS-subset model M for JNoC−CS with a normal world ω such that

M, ω ⊩ s ∶ P ∧ t ∶ ¬P

for some terms s and t and some proposition P .
Hence if we drop the + operation, we can have self consistent reasons without

getting reasons that are consistent among them even in the presence of an
axiomatically appropriate constant specification.

Instead of using an axiomatically appropriate constant specification, we
could also add the schema s ∶ ⊺ to JNoCCS in order to derive jd.
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Lemma 8.9 Let CS be an arbitrary constant specification. Let JNoC+CS be
JNoCCS extended by the schema s ∶ ⊺ for all terms s. We find that

JNoC+CS ⊢ ¬(t ∶ �) for each term t.

Proof. The following is an instance of axiom noc

¬(t ∶ � ∧ t ∶ ¬�).

Using the definition ⊺ ∶= ¬� and propositional reasoning, we obtain

t ∶ ⊺→ ¬(t ∶ �).

Using t ∶ ⊺ and modus ponens, we conclude ¬(t ∶ �). ◻

9 Remarks on Impossible and Inconsistent Obligations

There are two main advantages in using the justification logic framework to
deal with deontic matters. First, one can explicitly track which reasons are
reasons for what and perform operation on them, thus having a higher degree
of accuracy in formal representations of normative reasoning: every obligation
has a source. Puzzles and paradoxes such as Ross’ are very easy to identify and,
under a plausible set-up, disappear. In the present paper we have seen how
justification logic provides a means to keep track of the source of impossible
and inconsistent obligations, thus helping not to conflate the two.

Second, the framework allows for the hyperintensionality of obligation,
namely that logically equivalent contents may not be normatively equivalent.
In general it is not the case that if t ∶ F and F ≡ G, then t ∶ G. This also
ensures a finer-grained formal approach to everyday normative reasoning that
is currently unavailable in more standard approaches.

When we come to the specific topic of the present paper, however, we have
to remark that it is possible to distinguish between ¬O� and ¬(OA ∧ O¬A)

also in some non-normal implicit modal systems, as we noted in Sect. 2, and in
particular in Chellas’ system D (cf. [8,9]), which dispenses with axiom schema
M: O(A ∧B)→ OA ∧OB.

Chellas’ minimal monadic deontic logic D builds as usual on propositional
logic, adds ¬O� as an axiom, and has rule ROM: A→ B/OA→ OB. In Chellas’
logic the collapse is indeed avoided, because ¬(OA∧O¬A) is not derivable from
¬O�.

How does Chellas’ approach compare to the one developed in the present
paper? Given the apparent similarities, let’s focus on the differences, both tech-
nical and philosophical. Rule ROM could be questioned in a deontic context:
however, this rule is fundamental in Chellas’ system, therefore one cannot ig-
nore it (selectively or not); whereas in a justification logic context we can have a
finer-grained control on which axioms get an “automatic”, as it were, normative
justification, by fine-tuning the constant specification.

Philosophically, we can start from the semantic interpretation of the obli-
gation operator. For Chellas, “OA is true at a possible world just in case the
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world has a non-empty class of deontic alternatives throughout which A is true.
The picture is one of possibly empty collections of non-empty classes of worlds
functioning as moral standards: what ought to be true is what is entailed by
one of these moral standards [8, p.24]”. Chellas uses a neighborhood semantics.
A standard, for him, is a collection of propositions. A term, in the context of
the present paper, is instead interpreted as a set of worlds.

Moreover, Chellas’ system is still an implicit modal logic, so it cannot keep
track and reason with the sources of obligations. And indeed this reading
is consistent with Chellas’ intended interpretation of the obligation operator:
What ought to be true is what is entailed by one of these moral standards.
But which? In a justification logic context, for instance, if one wants to retain
Chellas’ ideas to interpret terms as moral standards, one can keep track of
which moral standard requires what.

10 Consistency, Permission, and Free Choice

10.1 Weak Permission

In the first part of the paper we studied different versions of consistency prin-
ciples in justification logic with a deontic interpretation, and we showed how
certain assumptions allow for finer-grained distinctions between impossible and
inconsistent obligations. In Standard Deontic Logic, as is well-known, permis-
sion is introduced as the dual of obligation: PF ∶= ¬O¬F . Thus, the con-
sistency principle D is sometimes expressed employing both obligation and
permission, in the following way:

OF → PF.

We call this the weak notion of permission. In the logics JD, JNoC, and JNoC−,
a weak notion of permission can be defined as follows:

⟨t⟩F ∶= ¬t ∶ ¬F.

This notion corresponds to the absence of a contrary obligation. Thus the
formula ⟨t⟩F can be read as “t tolerates F” (in the sense that it is not the
case that t obliges one to ¬F . This is weaker than “F is permitted because of
reason t.”) 8

Note that the axiom NoC in the logic JNoC is equivalent to

t ∶ A→ ⟨t⟩A.

8 Let us justify this weaker reading of ⟨⋅⟩ using an arithmetical interpretation. In the arith-
metical interpretation of justification assertions, t ∶ F means “t is a proof of F”. Then, ⟨t⟩F ,
defined as ¬t ∶ ¬F , means “t is not a proof of ¬F .” If ¬F is defined as F → �, then ¬t ∶ ¬F
means “t is not a proof that assuming F leads to a contradiction.” But of course this does
not mean that “t shows that F is consistent.” It only means that “according to t, F could be
consistent (but maybe there is another term proving ¬F and thus showing F ’s inconsistency).
The same remark can be applied to the deontic reading of ⟨t⟩F . The fact that “it is not the
case that t obliges ¬F” does not mean that F is permitted because of reason t; It only means
that t tolerates F .
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A good feature of subset models is that it provides a simple truth condition
for this kind of permission:

V (ω, ⟨t⟩F ) = 1 iff E(ω, t) /⊆ [¬F ],

where ω is a normal world. The above condition says that “¬F is not true
in an ideal world according to reason t from ω’s perspective”, which is weaker
than “F is true in an ideal world according to reason t from ω’s perspective (=
F is permissible in w because of t)”.

It is worth noting that, using the above truth condition, it is easy to show
that ⟨t⟩F ↔ ¬t ∶ ¬F is valid, but it is not the case that t ∶ F ↔ ¬⟨t⟩¬F is valid.
In fact, as the following result shows, in justification logics t ∶ ¬¬F ↔ t ∶ F is
not valid.

Lemma 10.1 There exists a NoC CS-subset model M = (W,W0, V,E,P ) with
some ω ∈W0 such that

M, ω /⊩ t ∶ F → t ∶ ¬¬F,

and

M, ω /⊩ t ∶ ¬¬F → t ∶ F,

for some term t and some formula F .

Proof. Consider the empty CS and the following model M:

(i) W = {ω, ν} and W0 = {ω},

(ii) V (ν,P ) = 1 and V (ν,F ) = 0 for all other formulas F ,

(iii) V (ω,F ) = 0 for all other formulas F ,

(iv) E(ω, t) = {ν} and E(ν, t) = ∅ for all terms t.

We observe that ν ∈Wnc. So the model is a well-defined NoC ∅-subset model.
Further, for every term t, we find E(ω, t) ⊆ [P ] and E(ω, t) /⊆ [¬¬P ]. Since
ω ∈W0, we get

M, ω /⊩ t ∶ P → t ∶ ¬¬P.

Now consider the model M′
= (W,W0, V

′,E,P ), defined similar to the above
model M, with the difference that:

● V ′
(ν,¬¬P ) = 1 and V ′

(ν,F ) = 0 for all other formulas F .

It is easy to show that M′ is a well-defined NoC ∅-subset model. In addition,
we have

M
′, ω /⊩ t ∶ ¬¬P → t ∶ P.

◻

10.2 Free Choice Permission

In the context of justification logic, where there is a focus on explicit, rather
than implicit, tools, there is another notion of permission that is worth consid-
ering. In this section, we add the notion of free choice permission to deontic
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justification logics, which we write ⟪t⟫ . We discuss the resulting logic, together
with a comparison with the different notions of permissions, in the next section.

Let us begin by defining the language upon which our justification logic
with the free choice permission operator will be built. Justification terms are
defined similar to that of Section 3. Formulas are built from a countably many
atomic propositions from the set Prop according to the following grammar:

F ∶∶= Pi ∈ Prop ∣ ⊥ ∣ F → F ∣ t ∶ F ∣ ⟪t⟫F.

The set of all formulas is denoted by LJF . Define ⟨t⟩F ∶= ¬t ∶ ¬F. Unlike the
weak notion of permission expressed by the operator ⟨⋅⟩ , we suggest to read
the strong notion of permission (i.e. the free choice permission) expressed by
⟪t⟫F as “F is permitted because of reason t.”

Add the following axioms to JNoC:

fcp ⟪t⟫(A ∨B)→ (⟪t⟫A ∧ ⟪t⟫B);
con ⟪t⟫A→ ⟨t⟩A.

The resulting logic is denoted by JNoCFCP. Note that a constant specification
for JNoCFCP may contain instances of axiom fcp or axiom con.

Semantics for this language is based on subset models.

Definition 10.2 [FCP subset model] Given some constant specification CS
for JNoCFCP, then an FCP CS-subset model M = (W,W0, V,E,P ) is a NoC
subset model (W,W0, V,E) augmented by a function P ∶ W × Tm → P(LJF )

that meets the following conditions. For all ω ∈W0, for all t ∈ Tm, and for all
A,B ∈ LJF :

● If A ∨B ∈ P (ω, t), then A,B ∈ P (ω, t).

● If A ∈ P (ω, t), then E(ω, t) /⊆ [¬A].

In addition to the conditions of Definition 4.1, the valuation function V should
satisfy the following condition:

V (ω,⟪t⟫F ) = 1 iff F ∈ P (ω, t),

where ω ∈W0.
Now the notion of FCP CS-validity can be defined similar to Definition 4.3.

Remember from the first part of the paper that the function E(ω, t) tells
us the states that are ideal according to t from ω’s perspective. Thus t ∶ F at ω
was true just in case F is true at those ideal states. Similarly, the function P
tells us which formulas t explicitly allows, from ω’s perspective. 9 Thus, ⟪t⟫F
is true at ω just in case F is explicitly allowed by t (from ω’s perspective). 10

Let us now turn to the completeness of JNoCFCP.

9 Note that the function P is similar to evidence functions used in Fitting models [16]. How-
ever, Fitting used the evidence function to present truth condition for justification formulas
t ∶ F , and the dual of t ∶ F was not mentioned in [16].
10We discuss the asymmetry between the semantic clauses of obligation (in terms of states)
and permission (in terms of formulas) in the next section.
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Definition 10.3 [Canonical Model] Let CS be an arbitrary constant
specification for JNoCFCP. We define the canonical model MC

=

(WC ,WC
0 , V

C ,EC , PC
) by:

● WC
= P(LJF ).

● WC
0 = { Γ ∈WC

∣ Γ is maximal JNoCFCP
CS -consistent set of formulas }.

● V C
(Γ, F ) = 1 iff F ∈ Γ.

● EC
(Γ, t) = { ∆ ∈WC

∣ ∆ ⊇ Γ/t }, where Γ/t ∶= {F ∈ LJF ∣ t ∶ F ∈ Γ}.

● PC
(Γ, t) = { F ∣ ⟪t⟫F ∈ Γ }.

Lemma 10.4 Let CS be an arbitrary constant specification for JNoCFCP. The
canonical model MC is an FCP CS-subset model.

Proof. We first show the condition

A ∨B ∈ PC
(Γ, t)⇒ A,B ∈ PC

(Γ, t),

where Γ ∈WC
0 , t ∈ Tm, and A,B ∈ LJF .

From A ∨ B ∈ PC
(Γ, t), it follows that ⟪t⟫(A ∨ B) ∈ Γ. By axiom fcp,

⟪t⟫A ∈ Γ and ⟪t⟫B ∈ Γ. Thus, A,B ∈ PC
(Γ, t).

We now show the condition

A ∈ PC
(Γ, t)⇒ EC

(Γ, t) /⊆ [¬A],

where Γ ∈WC
0 , t ∈ Tm, and A ∈ LJF .

From A ∈ PC
(Γ, t), it follows that ⟪t⟫A ∈ Γ. By axiom con, ⟨t⟩A ∈ Γ. Thus,

¬t ∶ ¬A ∈ Γ, and hence t ∶ ¬A /∈ Γ. Therefore, ¬A /∈ Γ/t. Let ∆ ∶= Γ/t. Then,
∆ ∈ EC

(ω, t). From ¬A /∈ ∆, it follows that ∆ /∈ [¬A]. Hence, EC
(ω, t) /⊆ [¬A].

We finally show that

V C
(Γ,⟪t⟫A) = 1 iff A ∈ PC

(Γ, t).

where Γ ∈WC
0 , t ∈ Tm, and A ∈ LJF .

The proof is as follows:

V C
(Γ,⟪t⟫A) = 1 iff ⟪t⟫A ∈ Γ iff A ∈ PC

(Γ, t).

◻

Again the Truth lemma and the completeness theorem follow easily.

Theorem 10.5 (Soundness and Completeness) Let CS be an arbitrary
constant specification for JNoCFCP. For each formula F ∈ LJF we have

JNoCFCP
CS ⊢ F iff F is FCP CS-valid.
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11 Remarks on Permission

11.1 On Free Choice Permission

In the last section, we added a modality for free-choice permission, which is
not simply the dual of obligation. The literature on Free-Choice Permission
is very large, and we cannot hope to account for it in a satisfying way in this
context. 11

However, we follow von Wright in calling something

permitted in the weak sense if it is not forbidden; and [...] permitted in
the strong sense if it is not forbidden, but subject to norm. Acts which are
strongly permitted are thus weakly permitted but not necessarily vice versa
([44, p. 86]).

And in fact, von Wright identifies strong permission with an express per-
mission: “that which is in the strong sense permitted is, somehow, expressly
permitted ([45]).”

In the language of justification logic, we can point to the reason why some-
thing is permitted, which we indicate with a term, and therefore we call this
strong or explicit permission.

In the previous section we have logically studied a notion of “explicit” per-
mission as free-choice permission. It is tempting to endorse the possibility that
strong permission and free-choice permission coincide, as [4] argues: the paper
offers strong philosophical arguments to support an approach to free-choice
permission as strong permission that is similar to ours, although it develops a
different formal model of it (based on default conditionals). 12

The peculiar nature of free-choice permission as explicit is reflected in the
choice of our semantic clauses: while the clause for obligation uses the function
E, which tells us the states that are ideal according to t from ω’s perspective,
the clause for permission uses the function P tells us which formulas t explicitly
allows, from ω’s perspective. This apparent asymmetry is explained by the
nature of free-choice permission, which is very sensitive to the options offered.
Such a level of fine-grainedness is well-captured by focusing on the formulas
that reasons directly allows, rather than states.

11A good starting point is the chapter on the varieties of permission in [19]. A recent logic
contribution is [18]. For a different point of view, see [11], which suggests a way to capture
the logic of free choice permission while avoiding known paradoxes by using a family of
substructural logics augmented with a non-monotonic reasoning principle.
12For more on this point, consider [1], which starts from the “open reading” of permissions:
an action is permitted if it meets sufficient conditions to be ok in a given normative system.
In turn, within this framework, obligations can be understood as the strongest action that
is necessary for it being ok, or as the weakest permission. The open reading of permissions
is in fact the same as strong permissions, at least in one interpretation. In fact, the open
reading licenses the free-choice principle. In this reading, permission and obligation are (i)
non-normal modalities, intepreted through a neighborhood semantics, (ii) not dual, but (iii)
are nonetheless connected. In particular, obligation implied permission, and something is
obligatory only in case no logically weaker action is both permitted and possible. Note that
in this framework, both obligation and permission remain non-hyperintensional.
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We now see how our account fares when it comes to a few known problems
from the literature. It is well-known that adding the free-choice permission
principle FCP: (P(A ∨ B) → PA ∧ PB) to standard modal logic leads to
disaster.

For instance, assuming a standard version of modal logic, that you may sit
on the sofa implies that you may destroy it:

(1) P(A), assumption

(2) P(A ∨B), from 1 and reasoning in standard modal logic

(3) PA ∧PB, from 2 and FCP

(4) PB, from 3 by reasoning in standard modal logic

where B is completely arbitrary.
Within our framework, something equivalent to (2) cannot already be de-

rived from the equivalent version of (1), for we would need another term that
explicitly permits A ∨B.

Moreover, hyperintensionality matters. In a non-hyperintensional modal
logic, thanks to the principle of the substitution of equivalents (RE: ⊢ A ↔
B/ ⊢ PA↔ PB), one can get: PA→ P(A ∧B).

(1) P(A), assumption

(2) A↔ (A ∧B) ∨ (A ∧ ¬B), by reasoning in standard modal logic

(3) PA↔ P((A ∧B) ∨ (A ∧ ¬B)), from 1 and 2 by RE

(4) PA→ P(A∧B), from 3 and FCP, by reasoning in standard modal logic.

Again, in our framework, something equivalent to RE is not available, so
our notion of free choice permission expressed by ⟪⋅⟫ is safe.

11.2 Duality

In this section we discuss different notions of permission and obligations that
can be expressed in our framework. On top of the standard obligation, ex-
pressed as t ∶ F , which we read as F is obligatory for reason t, we have its dual,
what we called weak permission, written as ⟨t⟩F . This is much weaker than
that F is permitted for reason t, which in our framework we identify with the
reading of ⟪t⟫F . The formula ⟨t⟩F therefore just denotes the absence of an
obligation to the contrary. A similar pattern emerges with the (potential) dual
of free-choice permission, ⟪t⟫F , which we write ⟦t⟧F . Let

⟦t⟧F ∶= ¬⟪t⟫¬F.

Since the operator ⟦⋅⟧ is the dual of the free choice permission, it is expected to
express some kind of obligation. However, ⟦⋅⟧does not obey the same properties
of obligation as in JNoC. For example, the formula ⟦t⟧A → ⟪t⟫A is equivalent
to ⟪t⟫A ∨ ⟪t⟫¬A, which says that for every reason t and for every formula A
either A is permitted because of t or ¬A is permitted because of t. Obviously,
this is not plausible, and thus ⟦t⟧A → ⟪t⟫A is not an acceptable property of
the operator ⟦⋅⟧.
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Let us add some other remarks on this notion. First, philosophically
speaking, if we accept the equation of free choice permission with explicit, or
strong, permission, which by the way has a certain affinity with the attitude
of justification logic as an explicit modal logic, then it makes sense to identify
its dual ⟦⋅⟧ as weak obligation. Weak obligation can be approximated, in
English, by the use of weak deontic modals, such as ‘ought’ and ‘should’, when
contrasted to strong deontic (semi)modals, like ‘must’ and ‘have to’. ‘Ought’
and ‘should’ are weaker than ‘must’ and ‘have to’, as shown by patterns such as:

OK: You should do the dishes, but you don’t have to.
NO: You must save his life, but you shouldn’t.

However, it is plausible that there are readings of ‘ought’ and ‘should’ that
would make the second sentence acceptable, and in particular prudential or
advisory readings. 13

A similar remark applies to ⟨t⟩ , i.e. weak permission as the dual of strong,
or explicit, obligation, which could be expressed by ‘might’ and ‘could’ (in En-
glish), as conjectured in part of the literature (e.g. [12]). While historically
‘might’ and ‘could’, in English, were weaker forms of ‘may’ and ‘can’, nowadays
they only seem to have retained pragmatic differences (e.g. in terms of polite-
ness), contrary to many other e.g. European languages where the equivalents
of ‘must/have to’ vs ‘ought/should’ patterns in the same way as the equivalents
of ‘may/can’ vs ‘might/could’. 14

Second, if we interpret ⟦t⟧ as the dual of ⟪t⟫ , we are saying that t is not
a reason for the free choice permission of the opposite action. Whether this
makes t enough to generate a weak obligation is unclear. However, we can
easily read ⟦t⟧ as an implicit modal operator, i.e. there is a weak obligation
that, without t being a specific reason for it. In fact, a similar remark can
be made for the dual of explicit obligation, i.e. t ∶ A, which we wrote ⟨t⟩ , it
too can be interpreted as there being a weak implicit permission of an implicit
kind, without t being a specific reason for it. 15

13However, note that a few extant theories on weak deontic modals suggest they are weaker
e.g. because of a counterfactual element (e.g. [15]). But see also [22].
14Note that [23, p. 184] claims, without giving evidence, that English and German lack
duals of weak necessity modals. [5] proposes to interpret the dual of weak deontic modals
as “faultlessness”, expressed by ‘justified’. For the purposes of this paper, it is interesting
to report the semantics Beddor suggests for weak necessity modals and for their dual (in
our parlance, strong permission). This semantics is couched in Kratzerian terms, but it does
not matter: “Weak necessity modals are universal quantifiers over the optimal worlds in the
modal base [...]. Strong necessity modals quantify over all of the acceptable worlds in the
modal base, where a world is acceptable as long as it’s good enough [...]. [T]ake expressions
of permission to be existential quantifiers over the acceptable worlds in the modal base. [...]
it’s natural to understand expressions of faultlessness as existential quantifiers over the very
best worlds.”
15A different interpretation of the dual of t ∶ A, although not in a deontic context, is offered by
[27], where ⟨t⟩A is indeed an explicit piece of evidence, although at the meta-level, consisting
in a model that validates A.
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Inferential patterns between weak obligation and explicit permission are
unclear. On one hand, natural language data do not seem to suggest that
explicit permission implies weak obligation in any straightforward sense, if we
stick to the modal analysis suggested, nor vice versa. However, on the other
hand, conceptual analysis might provide opposite evidence. Imagine a situation
where person A welcomes person B in their library, and A utters ‘you may sit
on the reading chair or on the sofa’. It seems plausible that person B should sit
on the chair or on the sofa — while clearly B does not have to sit, but could say
she prefers to stand, there is some expectation that one of the options should
be taken, barring some extenuating circumstance. This implication from free
choice permission to weak obligation seems to be absent in the case of strong
permission not offering a choice context. That you are now explicitly allowed
to pay taxes with apples does not seem to imply a weak obligation to do so in
the same way.

This account might be relatively simple and symmetric, but ultimately
prove unrealistic. It is plausible to imagine that strong permission and free
choice permission come apart in some cases. Our account is flexible enough to
deal with this scenario. In fact, in addition to the simple logic of free-choice
permission of the previous section, we present in the appendix A a further logic
of explicit permission that combines elements of free choice and of strong per-
mission (such as axiom fcp, and the existence of a dual, i.e. weak obligation,
that is implied by strong permission). This logic has a novel semantics.

11.3 Some Open Problems

We now put forward a few problems and ideas for discussion. First, to what
extent it makes sense to have non-disjunctive free-choice permission, e.g. ⟪t⟫A?
In this case, there is no explicit choice between different options. Second, there
is the intuition that strong obligation should imply weak obligation. But if
strong permission implies weak obligation, it is easy to see problems of triviality
arising. Third, if there is such a thing as weak obligation as the dual of strong
permission, should ⟪⋅⟫ have special modal axioms? Fourth, in our approach
we assumed that reasons can be both requiring (i.e. justifying obligations)
and permissive (i.e. justifying permissions). But it is also conceivable that we
should conceptualize reasons as different sets of terms.

12 Conclusion

We provided a novel semantics for justification logics with axiom D that does
not require an axiomatically appropriate constant specification, i.e. not every
axiom needs to be justified by a constant. This can be crucial to have more
control on the logic and solve some traditional puzzles such as Ross’. Axiom D
can be formulated in at least two equivalent ways in normal modal logic, either
with inconsistent obligations (¬(OA∧O¬A)) or with one impossible obligation
(¬O�). We proved that their explicit versions are interderivable in JD and
JNoC only when the constant specification is axiomatically appropriate. In
particular, our technical results are:



24 Consistency and Permission in Deontic Justification Logic

(i) JDCS proves noc for axiomatically appropriate CS and vice versa.

(ii) JNoCCS proves jd for axiomatically appropriate CS.

(iii) JDCS proves noc for arbitrary CS only if the language is based on the
Boolean connectives → and �.

(iv) JNoCCS does not prove jd for arbitrary CS.

(v) JNoC−CS does not prove jd for axiomatically appropriate CS.

Having more control not only on how to formulate axiom D, but also on how
to specify the constant specification is philosophically perspicuous: it avoids
conflating impossible and conflicting obligations and can encode why this is the
case, e.g. for conceptual (logical) or contingent reasons.

Recently, it was shown that principle noc is also very useful for analyzing
epistemic situations in the context of quantum physics [43].

When it comes to permission, we added a free-choice permission operator
to deontic justification logic which avoids known paradoxes from the litera-
ture. We proved that new logic is sound and complete. We discussed duality
between different notions of permission. The semantics we adopted presents
an asymmetry between obligation (which uses a subset-style clause) and free-
choice permission (which uses a basic model-style clause). While we think this
choice is justified for philosophical reasons, it will be interesting to investigate
a subset-style clause for free-choice permission in future work.
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in substructural logics, in: B. Liao, T. Ågotnes and Y. N. Wang, editors, Dynamics,
Uncertainty and Reasoning (2019), pp. 81–115.

[12] Faroldi, F. L. G., Hyperintensionality and Normativity, Springer, 2019.

[13] Faroldi, F. L. G. and T. Protopopescu, All-things-considered oughts (2018), ms.



Faroldi, Ghari, Lehmann, and Studer 25

[14] Faroldi, F. L. G. and T. Protopopescu, A hyperintensional logical framework for deontic
reasons, Logic Journal of the IGPL 27 (2019), pp. 411–433.

[15] von Fintel, K. and Iatridou, S., How To Say Ought in Foreign: The Composition of Weak
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A On Weak Obligation

In this section, we develop a new semantics for the explicit free choice permis-
sion based on neighborhood semantics. This semantics enables us to define a
proper truth condition for the dual of the explicit free choice permission.

We formulate our logic in the same language LJF as JNoCFCP. Define ⟨⋅⟩

and ⟦⋅⟧ as follows:

⟨t⟩F ∶= ¬t ∶ ¬F.

⟦t⟧F ∶= ¬⟪t⟫¬F.

Add the following axioms to JNoC:

fcp ⟪t⟫(A ∨B)→ (⟪t⟫A ∧ ⟪t⟫B);
con ⟪t⟫A→ ⟨t⟩A;
fcp-wo ⟪t⟫A→ ⟦t⟧A.

The resulting logic is denoted by WoJNoCFCP.

Definition A.1 [FCP subset-neighborhood model] Given some constant spec-
ification CS for WoJNoCFCP, an FCP CS-subset-neighborhood model M =

(W,W0, V,E,N) is a NoC subset model (W,W0, V,E) augmented by a function
N ∶W × Tm → P(P(W )) that meets the following conditions. For all ω ∈W0,
for all t ∈ Tm, and for all A,B ∈ LJF :

● If [A ∨B] ∈ N(ω, t), then [A], [B] ∈ N(ω, t).

● If [A] ∈ N(ω, t), then E(ω, t) /⊆ [¬A].

● If [A] ∈ N(ω, t), then [¬A] /∈ N(ω, t).

https://doi.org/10.1093/logcom/exy009
https://plato.stanford.edu/archives/sum2019/entries/logic-deontic
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In addition to the conditions of Definition 4.1, the valuation function V should
satisfy the following condition:

V (ω,⟪t⟫F ) = 1 iff [F ] ∈ N(ω, t),

where ω ∈W0.
Truth in all normal worlds of all FCP CS-subset-neighborhood models is

called FCP CS-N-validity.

The function N tells us which propositions t explicitly allows, from ω’s
perspective. 16 Thus, ⟪t⟫F is true at ω just in case the truth set of (or the
proposition expressed by) F is explicitly allowed by t (from ω’s perspective).
From the definition of ⟦⋅⟧, one can obtain the truth condition of the dual of the
explicit free choice permission as follows:

V (ω, ⟦t⟧F ) = 1 iff [¬F ] /∈ N(ω, t),

where ω ∈W0.
Let us now turn to the completeness of WoJNoCFCP.

Definition A.2 [Canonical Model] Let CS be an arbitrary constant spec-
ification for WoJNoCFCP. We define the canonical model MC

=

(WC ,WC
0 , V

C ,EC ,NC
) by:

● WC
= P(LJ).

● WC
0 = { Γ ∈WC

∣ Γ is maximal WoJNoCFCP
CS -consistent set of formulas }.

● V C
(Γ, F ) = 1 iff F ∈ Γ;

● EC
(Γ, t) = { ∆ ∈WC

∣ ∆ ⊇ Γ/t } where Γ/t ∶= {F ∈ LJ ∣ t ∶ F ∈ Γ}.

● NC
(Γ, t) = { ∣F ∣ ∣ ⟪t⟫F ∈ Γ }.

Here ∣F ∣ ∶= {Γ ∈W ∣ F ∈ Γ} is the proof set of F .

Note that in the canonical model MC we have

∣F ∣= {Γ ∈W ∣ F ∈ Γ} = {Γ ∈W ∣ V C
(Γ, F ) = 1} = [F ].

Lemma A.3 Let CS be an arbitrary constant specification for WoJNoCFCP.
The canonical model MC is an FCP CS-subset-neighborhood model.

Proof. We first show the condition

[A ∨B] ∈ NC
(Γ, t)⇒ [A], [B] ∈ NC

(Γ, t),

where Γ ∈WC
0 , t ∈ Tm, and A,B ∈ LJF .

From [A∨B] = ∣A ∨B∣∈ NC
(Γ, t), it follows that ⟪t⟫(A∨B) ∈ Γ. By axiom

fcp, ⟪t⟫A ∈ Γ and ⟪t⟫B ∈ Γ. Thus, [A], [B] ∈ NC
(Γ, t).

16The function N is similar to the neighborhood function used in [42] and [17]. However, in
these papers the neighborhood semantics are used to present truth condition for justification
formulas t ∶ F . In [17], the author also used the neighborhood semantics to define the truth
condition of the dual of the justification assertions.
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We now show the condition

[A] ∈ NC
(Γ, t)⇒ EC

(Γ, t) /⊆ [¬A],

where Γ ∈WC
0 , t ∈ Tm, and A ∈ LJF .

From [A] = ∣A∣∈ NC
(Γ, t), it follows that ⟪t⟫A ∈ Γ. By axiom con, ⟨t⟩A ∈

Γ. Thus, ¬t ∶ ¬A ∈ Γ, and hence t ∶ ¬A /∈ Γ. Therefore, ¬A /∈ Γ/t. Let
∆ ∶= Γ/t. Then, ∆ ∈ EC

(ω, t). From ¬A /∈ ∆, it follows that ∆ /∈ [¬A]. Hence,
EC

(ω, t) /⊆ [¬A].
We now show the condition

[A] ∈ NC
(Γ, t)⇒ [¬A] /∈ NC

(Γ, t),

where Γ ∈WC
0 , t ∈ Tm, and A ∈ LJF .

From [A] = ∣A∣∈ NC
(Γ, t), it follows that ⟪t⟫A ∈ Γ. By axiom fcp-wo, we

get ¬⟪t⟫¬A ∈ Γ. Thus, ⟪t⟫¬A /∈ Γ. Therefore, [¬A] = ∣¬A∣ /∈ NC
(Γ, t).

We finally show that

V C
(Γ,⟪t⟫A) = 1 iff [A] ∈ NC

(Γ, t).

where Γ ∈WC
0 , t ∈ Tm, and A ∈ LJF .

The proof is as follows:

V C
(Γ,⟪t⟫A) = 1 iff ⟪t⟫A ∈ Γ iff ∣A∣= [A] ∈ NC

(Γ, t).

◻

Again the Truth lemma and the completeness theorem follow easily.

Theorem A.4 (Soundness and Completeness) Let CS be an arbitrary
constant specification for WoJNoCFCP. For each formula F ∈ LJF we have

WoJNoCFCP
CS ⊢ F iff F is FCP CS-N-valid.
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